FINAL

ANNUAL MONITORING REPORT YEAR 4 (2015)

HAUSER CREEK STREAM RESTORATION SITE DAVIE COUNTY, NORTH CAROLINA (DMS Project No. 92471, Contract No. 004804) Construction Completed August 2011

Submitted to:
North Carolina Department of Environmental Quality
Division of Mitigation Services
1652 Mail Service Center
Raleigh, North Carolina 27699-1652

December 2015

FINAL

ANNUAL MONITORING REPORT YEAR 4 (2015)

HAUSER CREEK STREAM RESTORATION SITE DAVIE COUNTY, NORTH CAROLINA (DMS Project No. 92471, Contract No. 004804) Construction Completed August 2011

Submitted to:
North Carolina Department of Environmental Quality
Division of Mitigation Services
1652 Mail Service Center
Raleigh, North Carolina 27699-1652

Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

December 2015

Table of Contents

1.0 EXECUTIVE SUMMARY12.0 METHODOLOGY22.1 Vegetation Assessment22.2 Stream Assessment33.0 REFERENCES4
Appendices
APPENDIX A. PROJECT SITE LOCATION MAP AND BACKGROUND TABLES Figure 1. Site Location Map Table 1. Project Components and Mitigation Credits Table 2. Project Activity and Reporting History Table 3. Project Contacts Table Table 4. Project Baseline Information and Attributes APPENDIX B. VISUAL ASSESSMENT DATA Figures 2 and 2A-2B. Current Conditions Plan View Table 5. Visual Stream Morphology Stability Assessment Table 6. Vegetation Condition Assessment Stream Fixed-Station Photographs Vegetation Monitoring Photographs APPENDIX C. VEGETATION PLOT DATA Table 7. Vegetation Plot Criteria Attainment Table 8. CVS Vegetation Plot Metadata Table 9. Total and Planted Stems by Plot and Species APPENDIX D. STREAM SURVEY DATA Cross-section Plots Longitudinal Profile Plots Substrate Plots Table 10. Baseline Stream Data Summary Table 11a - b. Monitoring Data APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events

1.0 EXECUTIVE SUMMARY

The North Carolina Department of Environmental Quality- Division of Mitigation Services (DMS, formerly NCEEP) has completed stream mitigation at the Hauser Creek Stream Restoration Site (hereafter referred to as the "Site") located on the property of Alethea Segal in Davie County, North Carolina to assist in fulfilling stream mitigation goals in the area. The Site is located in United States Geological Survey (USGS) Hydrologic Unit 03040101160010 (North Carolina Division of Water Quality [NCDWQ] Subbasin 03-07-02) of the Yadkin Pee-Dee River Basin. The Site is not located in a Targeted Local Watershed. The Site drainage area is an approximately 2.64-square mile rural watershed at the Site outfall consisting primarily of forest and pasture land with low-density residential property. This report (compiled based on NCEEP's *Procedural Guidance and Content Requirements for EEP Monitoring Reports* Version 1.4 dated 11/7/11) summarizes data for year 4 (2015) monitoring.

Restoration goals outlined in the approved *Hauser Creek Restoration Plan* [NCEEP 2008] include the following.

- Improve water quality with the construction of stable stream banks, removal of cattle access, and the establishment of a protective buffer.
- Control transport of sediment recruited by stream flows from cleared adjacent floodplains with the establishment of a forested buffer.
- Improve the stream function and habitat with the connection of the channelized and incised stream back to its floodplain.
- Restore long-term stability with the restoration of channel pattern, profile, and dimension.
- Improve in-stream habitat with the installation of root wads, constructed riffles, cross-vanes, and single wing vanes to enhance pool depths.
- Improve buffer habitat by creating ephemeral pools within the old channel fill areas.

Project objectives outlined in the approved *Hauser Creek Restoration Plan* [NCEEP 2008] include the following.

- The restoration of 2525 linear feet of stream with Priority I Restoration in order to raise the stream elevation, reconnect the floodplain, restore pattern, and reestablish channel dimension.
- The enhancement of 93 linear feet of stream with Enhancement Level II activities, which involve buffer restoration and bank stabilization.
- The preservation of 108 linear feet of stream by placing a conservation easement along the downstream reach of channel.
- Establish a riparian buffer with an average distance of 50 feet beyond each stream bank.

Prior to construction, the Site contained a degraded stream channel located within maintained pasture and floodplain fields with wooded uplands. Site streams were characterized by a narrow buffer, channels widths approximately two times what they should be, steep to moderate bank slopes, incision, and elevated bankheight ratios. Project construction was completed in August 2011. The Site will be protected by a permanent conservation easement held by the State of North Carolina.

Seven vegetation monitoring plots were monitored on July 8, 2015 for Year 4 (2015) monitoring. Vegetation success criteria dictate that an average density of 320 stems-per-acre must be surviving in the first three monitoring years. Subsequently, 288 stems-per-acre must be surviving in year 4 and 260 stems-per-acre in year 5. Stem counts will be based on an average of the evaluated vegetation plots. Based on the number of stems counted, average densities were measured at 509 planted stems-per-acre (excluding livestakes) surviving in Year 4 (2015). The dominant species identified at the Site were planted stems of sycamore (*Platanus occidentalis*) and green ash (*Fraxinus pennsylvanica*). All seven vegetation plots met success criteria based on planted stems alone.

Overall, vegetation at the Site is thriving. One small population of Japanese honeysuckle was observed near and in vegetation plot 1 (Figure 2A, Appendix B). This area is small and does not appear to have spread during Year 4 (2015). It will continue to be closely monitored during subsequent monitoring years to determine if remedial activities should occur.

Success criteria for stream restoration will be assessed using measurements of stream dimension, pattern, and profile; Site photographs; visual assessments; and vegetation sampling. Success is based on the stability of the stream.

Overall, the stream is functioning properly and as designed. Three areas of bank erosion were observed in past monitoring years, and they continued to erode during Year 4 (2015). It is expected that bank erosion will stabilize as more woody vegetation establishes on the stream banks; this will continue to be closely monitored during Year 5 (2016). Additionally, several high flow rain events during Year 4 (2015) resulted in two areas of streambed degradation. All areas of concern are noted in Figures 2A-2B (Appendix B) and are listed in the table below.

Map Label*	Station	Notes
SAC-1	22+50	Moderate erosion and sloughing of approximately 25 feet along the right bank of an outer bend
SAC-2	18+75	Severe erosion and sloughing of approximately 30 feet along the left bank of an outer bend as well as approximately 10 feet of the inner bend
SAC-3	12+00	Moderate erosion and sloughing of approximately 15 feet along the right bank of an outer bend
SAC-4	20+30 to 22+45	Streambed degradation – riffle and pool scour and loss of bed material throughout reach due to high flow events on approximately 215 feet of stream
SAC-5	14+05 to 18+20	Streambed degradation – riffle and pool scour and loss of bed material throughout reach due to high flow events on approximately 415 feet of stream

^{*}Map labels on Figures 2A-2B, Appendix B

Additionally, two beaver dams were observed during an October 2015 walkthrough (Figures 2A-2B, Appendix B). Beaver activity will continue to be monitored throughout Year 5 (2016).

Success criteria for stream restoration will include documentation of two bankfull channel events during the monitoring period. In the event that less than two bankfull events occur during the first five years, monitoring will continue until the second event is documented. In addition, bankfull events must occur during separate monitoring years. A crest gauge is located within the Site to assist with documentation of bankfull events (Figures 2 and 2A-2B, Appendix B). Three bankfull events were documented to date during the Year 4 (2015) monitoring season for a total of 13 bankfull events.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on DMS's website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Seven vegetation plots were established and marked after construction with metal t-posts demarking the four corners of the plot. The plots are 10 meters square and are located randomly within the Site. These

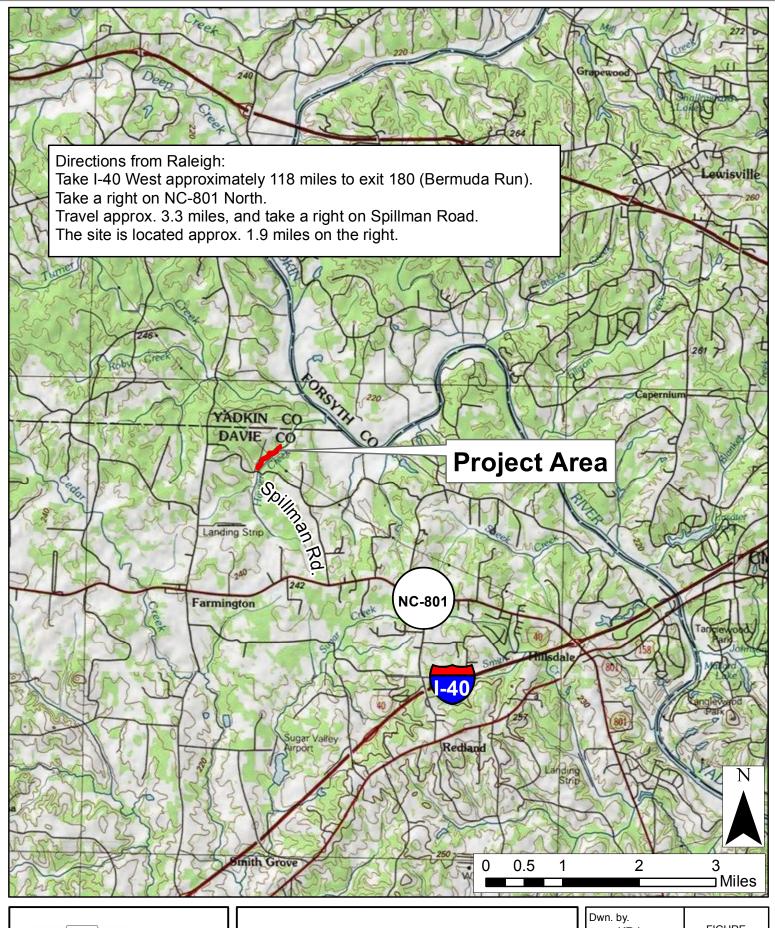
plots were surveyed on July 8, 2015 for the Year 4 (2015) monitoring season using the *CVS-EEP Protocol* for Recording Vegetation, Version 4.2 (Lee et al. 2008) (http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Southern and Mid-Atlantic States* (Weakley 2012).

2.2 Stream Assessment

Annual stream monitoring was conducted at the end of March 2015 for the Year 4 (2015) monitoring season. Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data. Pebble counts were completed using the modified Wolman method (Rosgen 1993). A crest gauge was installed in the lower portion of the Site to assist with documentation of overbank events.

Seven permanent cross-sections, five riffle and two pool, will be used to evaluate stream dimension; locations are depicted on Figures 2 and 2A-2B (Appendix B). Cross-sections are permanently monumented with metal t-posts at each end point. Cross-sections will be surveyed annually to provide a detailed measurement of the stream and banks including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, pebble counts were completed at cross-sections 3, 5, and 7, and photographs will be taken at each permanent cross-section annually.

One approximately 2500-linear foot monitoring reach (the entire Site stream reach) will be used to evaluate stream pattern and longitudinal profile (Figures 2 and 2A-2B, Appendix B). Measurement of channel pattern will include belt-width and meander length. Subsequently, data will be used to calculate meander-width ratios. Longitudinal profile measurements will include average water surface slopes, facet slopes, and pool-to-pool spacing. In addition, visual stream morphology stability assessments will be completed in each monitoring reach annually to assess the channel bed, banks, and in-stream structures.


3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2. (online). Available: http://cvs.bio.unc.edu/methods.htm.
- North Carolina Ecosystem Enhancement Program (NCEEP). 2008. Hauser Creek Restoration Plan Davie County, NC.
- North Carolina Ecosystem Enhancement Program (NCEEP). Unpublished. Procedural Guidance and Content Requirements for EEP Monitoring Projects, Version 1.4, dated 11/07/11. NC Department of Environment and Natural Resources. Available online at http://portal.ncdenr.org/c/document_library/get_file?p_l_id=1169848&folderId=2288101&name=DLFE-39268.pdf.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: http://www.herbarium.unc.edu/WeakleysFlora.pdf [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2015. Station at Winston Salem Airport, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html?req_city=NA https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html https://www.wunderground.com/history/airport/KINT/2015/10/9/DailyHistory.html https://www.wunderground.com/history.html <a href=

APPENDIX A

PROJECT SITE LOCATION MAP AND BACKGROUND TABLES

- Figure 1. Site Location Map
- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

SITE LOCATION MAP HAUSER CREEK DMS PROJECT NUMBER 92471 Davie County, North Carolina

Dwn. by. KRJ	FIGURE
Date: October 2015	1
Project: 12-004.11	ı

Table 1. Project Components and Mitigation Credits

Hauser Stream Restoration Site (DMS Project Number 92741)

		•	*		Mitigation Credits						
	Stream Riparian Wetland					Buffer					
Type	Restoratio	n	Restor	ation Equival	ent Restora	Restoration Restoration Equivalent			Buller		
Totals	2387			22							
	Projects Components										
Project Component/ Reach ID	Station Range	Existing Foot Acre		Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Foot Acreage	age/	Mitigation Ratio	Comment		
Reach 1	00+72 - 16+40		-	P1	Restoration	1568		1:1	Priorit	y 1 Restoration	
Reach 2	16+40 – 19+90		-	P1	Restoration	350		2:1	Half Credit Due to Location Within a Utilities Easement		
Reach 3	19+90 - 26+31	64	4 1	P1	Restoration	607		1:1	34 ft is Outside of Easement in Piped Crossing		
Reach 4	26+31-27+39	10)8	Pres	Preservation	108		5:1	Preservation		
Reach 5		9.	3	E2	Enhancement (Level II)	93		2.5:1	Level I	Level II Enhancement.	
					Component Summation						
Restoration Level			S	Stream (linear footage)		Riparian Wetland (acres)		Buffer (square footage)			
Restoration				2525*							
Enhancement (Level II)			93								
Preservation			108								
	Totals				2726	726					
	Mitigation Uni	its			2409 SMUs						

^{*34} linear feet is located outside of the easement in a piped crossing and is therefore not counted for mitigation credit; in addition, 350 linear feet is located within a utilities easement and therefore only receives half credit (2:1 mitigation ratio)

Table 2. Project Activity and Reporting History Hauser Stream Restoration Site (DMS Project Number 92471)

Elapsed Time Since Grading Complete: 4 years 4 months Elapsed Time Since Planting Complete: 3 years 11 months

Number of Reporting Years: 4

A 9	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
ERTR		April 2008
Restoration Plan		May 2008
No-rise Flood Study Approval		December 2009
Construction Plans / Erosion Control Plan		June 2010
Land Quality Approval		May 2011
Construction and Grading Begins		April 2011
Temporary S&E Mix Applied		April-August 2011
Permanent Seed Mix Applied		April-August 2011
Construction and Grading Ends		August 2011
Containerized Planting for Entire Reach		January 2012
As-Built Construction Drawings		March 2012
SCO Final Report		March 2012
Year 1 Monitoring (2012)	October 2012	December 2012
Year 2 Monitoring (2013)	October 2013	November 2013
Year 3 Monitoring (2014)	September 2014	September 2014
Year 4 Monitoring (2015)	October 2015	December 2015
Year 5 Monitoring (2016)		

Table 3. Project Contacts Table

Hauser Stream Restoration Site (DMS Project Number 92471)

Designer	Ward Consulting Engineers, P.C.			
-	8368 Six Forks Road Suite 104			
	Raleigh, NC 27615-5083			
	Becky Ward 919-870-0526			
Construction, Planting, and Seeding	Carolina Environmental Contracting, Inc.			
Contractor	Mt. Airy, North Carolina			
	336-320-3849			
Surveyor	Turner Land Surveying PLLC			
	3201 Glenridge Drive			
	Raleigh, NC 27604			
	Elizabeth Turner 919-875-1378			
Seed Mix Source	Unknown			
Baseline Data Collection	Not Applicable			
Annual Monitoring Performer	Axiom Environmental, Inc.			
	218 Snow Avenue			
	Raleigh, NC 27603			
	Grant Lewis 919-215-1693			

Table 4. Project Baseline Information and Attributes

Hauser Stream Restoration Site (DMS Project Number 92471)

	Hauser Stream Restoration Site (DMS Project Number 92471)					
Project Information						
Project Name	Hauser Stream Restoration Site					
Project County	Davie County, North Carolina					
Project Area	9.11 acres					
Project Coordinates	836,322.303°N, 1,551,907.668°E					
Project Watersho	ed Summary Information					
Physiographic Region	Piedmont					
Ecoregion	Southern Outer Piedmont					
Project River Basin	Yadkin Pee-dee					
USGS 8-digit HUC	03040101					
USGS 14-digit HUC	03040101160010					
NCDWQ Subbasin	03-07-02					
Project Drainage Area	2.64 square miles					
Project Drainage Area Impervious Surface	0.6%					
Watershed Type	Rural					
Reach Sun	nmary Information					
Parameters	Hauser Creek					
Restored/Enhanced Length	2726 linear feet					
Drainage Area	2.64 square miles					
NCDWQ Index Number	12-86					
NCDWQ Classification	WS-IV					
Valley Type/Morphological Description	VIII/C4					
Dominant Soil Series	Wehadkee, Chewacla					
Drainage Class	Poorly Drained, Somewhat poorly drained					
Soil Hydric Status	Hydric, Nonhydric may contain hydric Wehadke					
	inclusions					
Slope	0.0025					
FEMA Classification	Regulated Stream					
Native Vegetation Community	Piedmont/Low Mountain Alluvial Forest					
Percent Composition of Exotic Invasives	<5%					
Regulato	ry Considerations					
Regulation	Applicable					
Waters of the U.S. –Sections 404 and 401	Yes-Received Appropriate Permits					
Endangered Species Act	Yes-No Effect					
Historic Preservation Act	No					
CZMA/CAMA	No					
FEMA Floodplain Compliance	Yes-Received a No Rise Certification					
Essential Fisheries Habitat	No					

APPENDIX B

VISUAL ASSESSMENT DATA

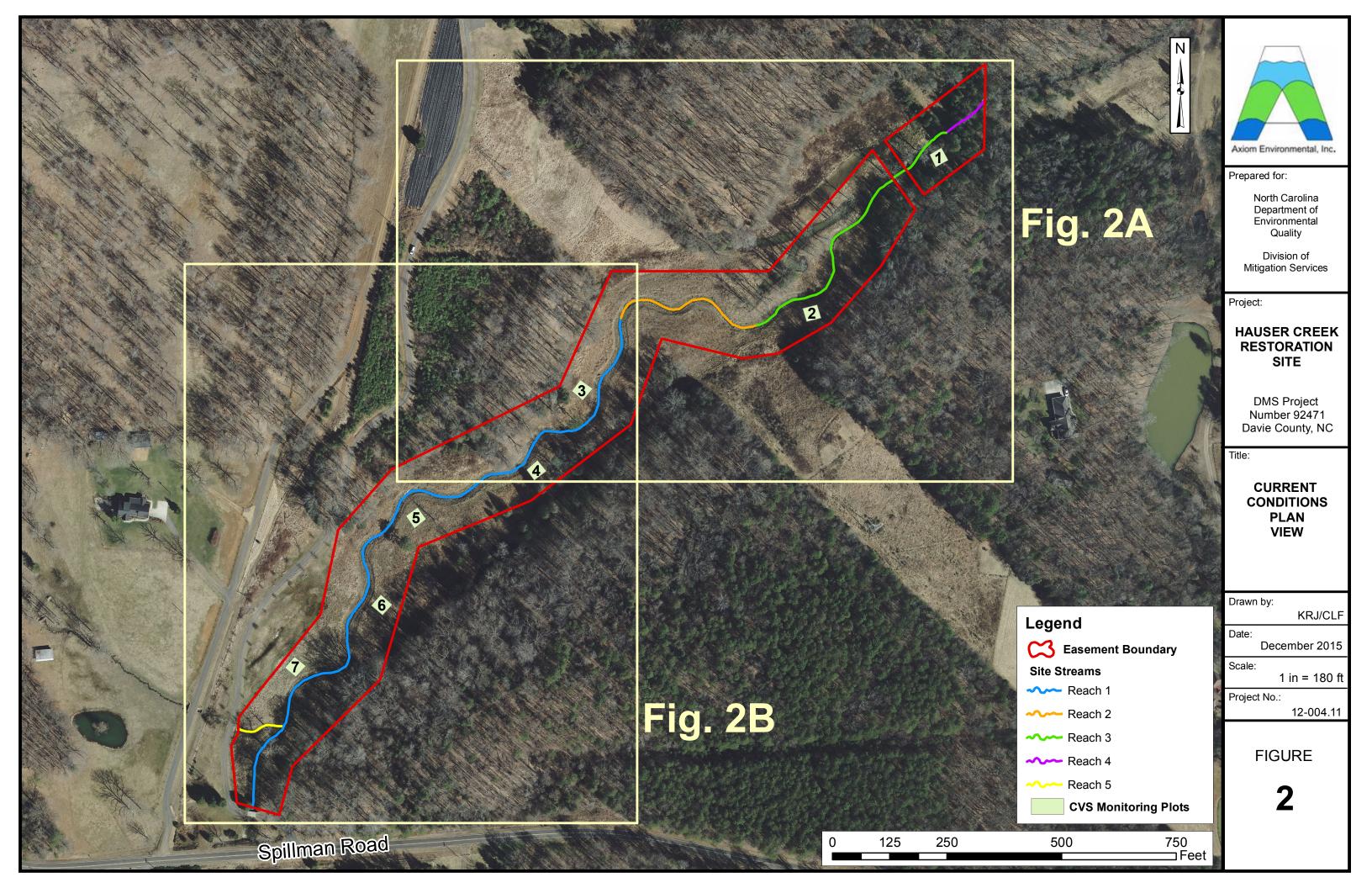

Figures 2 and 2A-2B. Current Conditions Plan View

Table 5. Visual Stream Morphology Stability Assessment

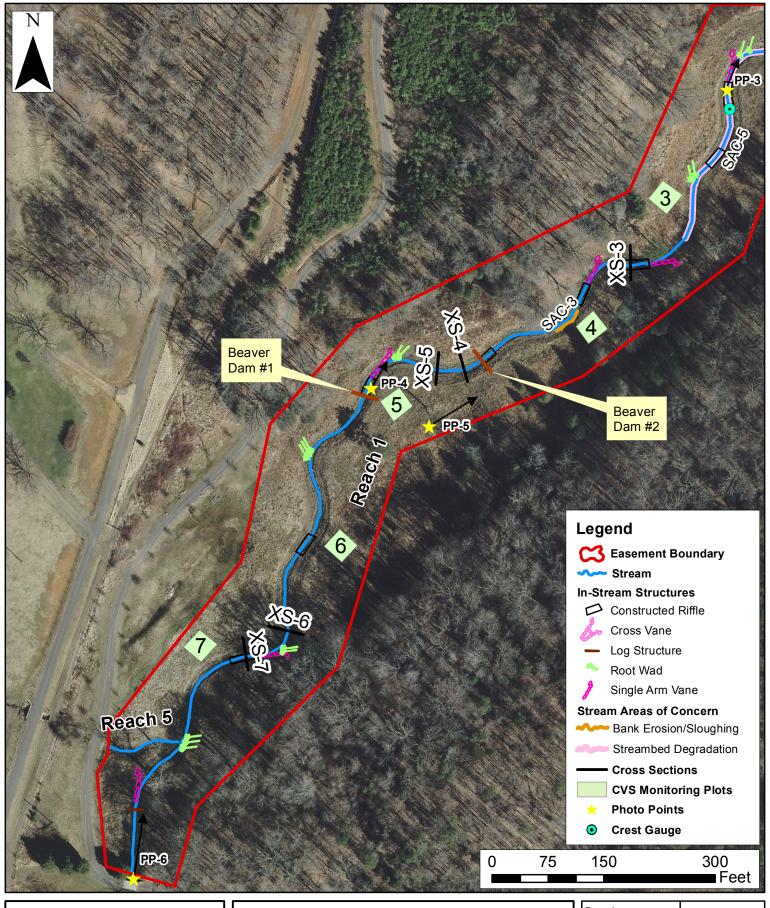
Table 6. Vegetation Condition Assessment

Stream Fixed Station Photographs

Vegetation Monitoring Photographs

Axiom Environmental 218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

CURRENT CONDITIONS PLAN VIEW
HAUSER CREEK
DMS PROJECT NUMBER 92471
Davie County, North Carolina


Dwn. by.

KRJ/CLF

Date:
December 2015

Project:
12-004.11

2A

CURRENT CONDITIONS PLAN VIEW
HAUSER CREEK
DMS PROJECT NUMBER 92471
Davie County, North Carolina

Dwn. by. KRJ/CLF

Date:

December 2015

12-004.11

Project:

FIGURE

2B

Table 5 Visual Stream Morphology Stability Assessment Hauser

Reach ID Assessed Length

2468

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			2	630	74%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	15	15			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	24	24			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%	1		
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
	-									
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			4	80	98%			98%
				Totals	4	80	98%	0	0	98%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

HAUSER

Table 6 <u>Vegetation Condition Assessment</u>

Planted Acreage¹

eage'

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	NA	0.1 acres	N/A	0	0.00	0.0%
2. Low Stem Density Areas	NA	0.1 acres	N/A	0	0.00	0.0%
			Total		0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	NA	0.25 acres	N/A	0	0.00	0.0%
Cumulative Tot			mulative Total	0	0.00	0.0%

Easement Acreage² 13.34

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Japanese honeysuckle	1000 SF	N/A	1	0.07	0.5%
5. Easement Encroachment Areas ³	NA	none	N/A	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an are

Hauser Creek Stream Fixed Station Photographs Taken July 2015

Hauser Creek Vegetation Monitoring Photographs Taken July 2015

APPENDIX C VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

Table 9. Total and Planted Stems by Plot and Species

Table 7. Vegetation Plot Criteria Attainment

Hauser Restoration Site (DMS Project Number 92741)

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	Yes	100%
5	Yes	
6	Yes	
7	Yes	

Table 8. CVS Vegetation Plot Metadata

Hauser Restoration Site (DMS Project Number 92741)

Corri Faquin
7/7/2015 15:55
Axiom-EEP-2015-A-v2.3.1.mdb
S:\CVS database\2015
PHILLIP-PC
61210624
THIS DOCUMENT
Description of database file, the report worksheets, and a summary of project(s) and project data.
Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Frequency distribution of vigor classes for stems for all plots.
Frequency distribution of vigor classes listed by species.
List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage values tallied by type for each species.
Damage values tallied by type for each plot.
A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
92471
UT to Hauser Creek
Stream Restoration
Yadkin-Pee Dee
7

Table 9. Total and Planted Stems by Plot and Species DMS Project Code 92471. Project Name: Hauser Creek

				Current Plot Data (MY4 2015)																			
			924	71-01-0	001	924	71-01-	0002	924	71-01-0	0003	924	71-01-0	0004	924	71-01-0	0005	924	1 71-01-	0006	924	71-01-0	0007
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Abelia	abelia																						
Acer negundo	boxelder	Tree																					1
Acer rubrum	red maple	Tree																					
Alnus serrulata	hazel alder	Shrub	1	1	1	1	1		1									2	2 2	2 2			
Betula nigra	river birch	Tree							2	2	. 2	1	1	1	2	2	. 2	2 1	. 1	1	-		
Callicarpa americana	American beautyberry	Shrub							1	1	1												
Cornus amomum	silky dogwood	Shrub	3	3	3	3	3	3	3						1	1	. 1	1	. 1	1 1	. 1	1	. 1
Diospyros virginiana	common persimmon	Tree	3	3	3	1	1		1			1	1	1				1	. 1	1 1	. 1	1	. 1
Fraxinus pennsylvanica	green ash	Tree	4	4	17	3	3	2.	1 4	4	16	4	4	29	1	1	. 83	3	. 4	1 7	7		
Juglans nigra	black walnut	Tree																					
Juniperus virginiana	eastern redcedar	Tree															5	5		2			
Liquidambar styraciflua	sweetgum	Tree			22			32	2		51			38			11	L		2			1
Liriodendron tulipifera	tuliptree	Tree	1	1	5						8							1	. 1	1 1	. 1	1	. 1
Nyssa	tupelo	Tree													2	2	. 2	2 2	2 2	2 2			
Nyssa sylvatica	blackgum	Tree							2	2	. 2												
Physocarpus opulifolius	common ninebark	Shrub	1	1	1				2	2	. 2										1	1	. 1
Platanus occidentalis	American sycamore	Tree	2	2	2	1	1	. :	1 2	2	. 2	. 8	8	17	1	1	. 4	Į.			4	4	. 4
Pyrus calleryana	Callery pear	Exotic																					
Quercus michauxii	swamp chestnut oak	Tree	1	1	1				1	1	1							1	. 1	1 1	. 2	2	. 2
Sambucus canadensis	Common Elderberry	Shrub																		1	. 1	1	. 1
Ulmus americana	American elm	Tree																					
Unknown		Shrub or Tree	1	1	1																		
Viburnum dentatum	southern arrowwood	Shrub													3	3	3	3					
		Stem count	17	17	56	9	9	59	14	14	85	14	14	86	10	10	111	13	13	3 21	. 11	11	13
		size (ares)		1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	9	9	10	5	5	6	5 7	7	9	4	4	5	6	6	8	8	8	3 11	. 7	7	9
	9	Stems per ACRE	688	688	2266	364.2	364.2	2388	566.6	566.6	3440	566.6	566.6	3480	404.7	404.7	4492	526.1	526.1	849.8	445.2	445.2	526.1

Color for Density

Exceeds requirements by 10% PnoLS = Planted excluding livestakes

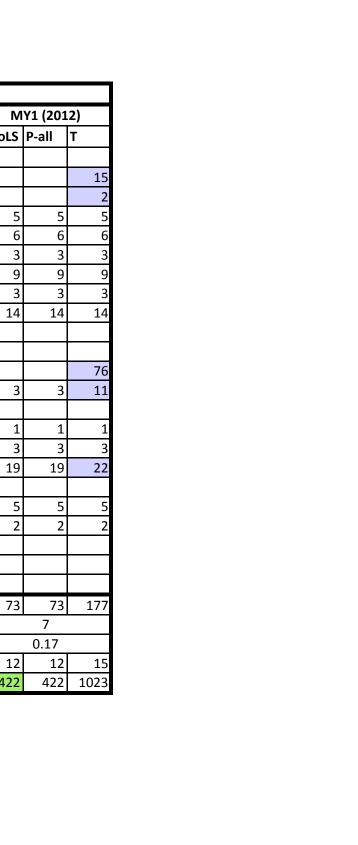
Exceeds requirements, but by less than 10% P-all = Planting including livestakes

Fails to meet requirements, by less than 10% T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (continued) DMS Project Code 92471. Project Name: Hauser Creek

	•				Annual Means									
			M	Y4 (201	.5)	M	IY3 (201	.4)	M	IY2 (201	L3)	M	Y1 (201	.2)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Abelia	abelia										2			
Acer negundo	boxelder	Tree			1			43			14			15
Acer rubrum	red maple	Tree												2
Alnus serrulata	hazel alder	Shrub	4	4	4	4	4	6	3	3	5	5	5	5
Betula nigra	river birch	Tree	6	6	6	7	7	7	7	7	11	6	6	6
Callicarpa americana	American beautyberry	Shrub	1	1	1	2	2	2	3	3	3	3	3	3
Cornus amomum	silky dogwood	Shrub	9	9	9	9	9	9	11	11	11	9	9	9
Diospyros virginiana	common persimmon	Tree	7	7	7	8	8	8	8	8	8	3	3	3
Fraxinus pennsylvanica	green ash	Tree	20	20	173	20	20	221	20	20	167	14	14	14
Juglans nigra	black walnut	Tree						1			1			
Juniperus virginiana	eastern redcedar	Tree			7									
Liquidambar styraciflua	sweetgum	Tree			157			320			189			76
Liriodendron tulipifera	tuliptree	Tree	3	3	15	3	3	10	3	3	6	3	3	11
Nyssa	tupelo	Tree	4	4	4	4	4	4	2	2	2			
Nyssa sylvatica	blackgum	Tree	2	2	2	2	2	2	1	1	1	1	1	1
Physocarpus opulifolius	common ninebark	Shrub	4	4	4	4	4	4	2	2	2	3	3	3
Platanus occidentalis	American sycamore	Tree	18	18	30	18	18	50	18	18	28	19	19	22
Pyrus calleryana	Callery pear	Exotic						1						
Quercus michauxii	swamp chestnut oak	Tree	5	5	5	5	5	5	5	5	5	5	5	5
Sambucus canadensis	Common Elderberry	Shrub	1	1	2	1	1	1	2	2	2	2	2	2
Ulmus americana	American elm	Tree						1			1			
Unknown		Shrub or Tree	1	1	1	1	1	2	1	1	1			
Viburnum dentatum	southern arrowwood	Shrub	3	3	3	3	3	3	4	4	4			
		Stem count	88	88	431	91	91	700	90	90	463	73	73	177
		size (ares)		7			7			7			7	
		size (ACRES)		0.17			0.17			0.17			0.17	
		Species count	15	15	18	15	15	20	15	15	20	12	12	15
		Stems per ACRE	508.7	508.7	2492	526.1	526.1	4047	520.3	520.3	2677	422	422	1023


Color for Density

Exceeds requirements by 10% PnoLS = Planted excluding livestakes

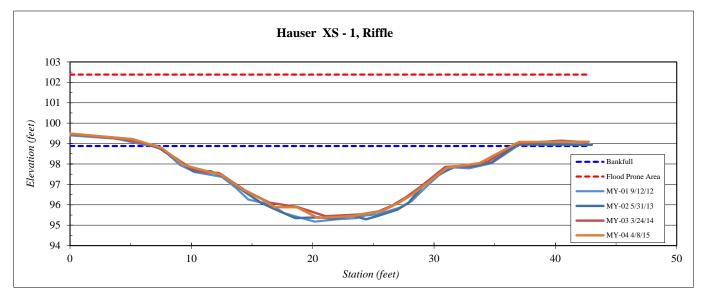
Exceeds requirements, but by less than 10% P-all = Planting including livestakes

Fails to meet requirements, by less than 10% T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

APPENDIX D STREAM SURVEY DATA

Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10. Baseline Stream Data Summary
Tables 11a-b. Monitoring Data


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 1, Riffle
Feature	Riffle
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.0	99.49
5.2	99.21
7.6	98.78
9.4	97.95
12.4	97.47
14.2	96.76
15.8	96.29
16.9	95.88
18.7	95.88
20.4	95.36
21.7	95.39
23.4	95.45
24.8	95.60
25.8	95.73
27.0	96.07
28.2	96.49
31.1	97.81
33.8	98.04
37.0	99.08
42.8	99.09

SUMMARY DATA	
Bankfull Elevation:	98.9
Bankfull Cross-Sectional Area:	59.1
Bankfull Width:	29.4
Flood Prone Area Elevation:	102.4
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.5
Mean Depth at Bankfull:	2.0
W / D Ratio:	14.6
Entrenchment Ratio:	5.1
Bank Height Ratio:	1.0

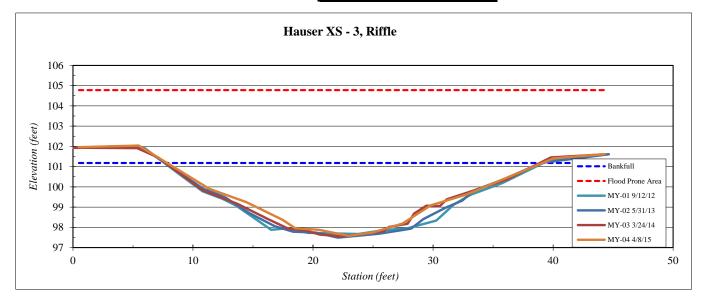
Strea	ат Туре	C

Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 2, Riffle
Feature	Riffle
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.00	100.69
9.72	98.93
15.35	98.00
17.48	97.68
19.21	96.98
20.10	96.49
20.57	95.99
21.61	95.53
22.44	94.85
23.61	94.64
23.94	94.68
25.02	95.61
25.66	95.86
26.61	96.83
28.35	97.23
31.3	98.21
35.3	99.34
39.5	99.57

SUMMARY DATA	
Bankfull Elevation:	99.3
Bankfull Cross-Sectional Area:	50.6
Bankfull Width:	27.8
Flood Prone Area Elevation:	104.0
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.7
Mean Depth at Bankfull:	1.8
W / D Ratio:	15.3
Entrenchment Ratio:	5.4
Bank Height Ratio:	1.0

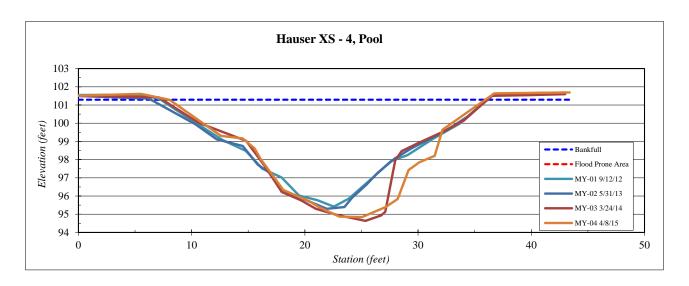
Stream Type	С


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 3, Riffle
Feature	Riffle
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.50	101.96
5.47	102.04
11.36	99.90
14.44	99.25
17.47	98.37
18.52	97.95
20.48	97.88
22.95	97.58
24.99	97.75
27.47	98.19
29.81	99.09
32.76	99.62
40.02	101.41
44.31	101.61

SUMMARY DATA	
Bankfull Elevation:	101.2
Bankfull Cross-Sectional Area:	63.9
Bankfull Width:	31.3
Flood Prone Area Elevation:	104.8
Flood Prone Width:	150.0
Max Depth at Bankfull:	3.6
Mean Depth at Bankfull:	2.0
W / D Ratio:	15.3
Entrenchment Ratio:	4.8
Bank Height Ratio:	1.0

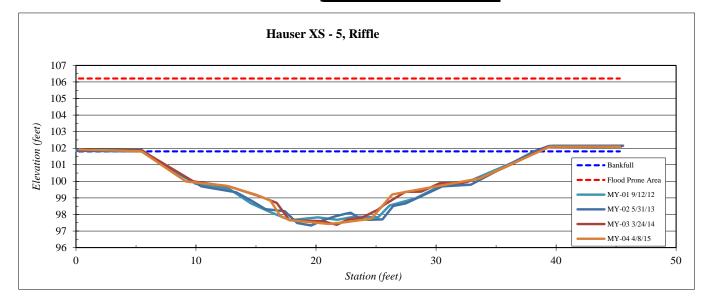
Stream Type	C


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 4, Pool
Feature	Pool
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.0	101.5
5.5	101.6
8.0	101.3
12.6	99.3
14.5	99.2
15.6	98.6
16.1	98.0
18.1	96.3
20.5	95.7
21.2	95.4
23.1	94.9
25.0	94.8
27.1	95.4
28.2	95.8
29.2	97.4
30.1	97.8
31.5	98.2
32.2	99.6
36.7	101.6
43.4	101.7

SUMMARY DATA	
Bankfull Elevation:	101.3
Bankfull Cross-Sectional Area:	97.8
Bankfull Width:	27.9
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	6.4
Mean Depth at Bankfull:	3.5
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

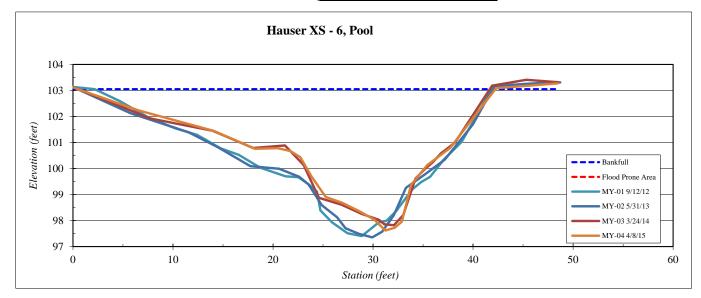
Stream Type	C/E
-------------	-----


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 5, Riffle
Feature	Riffle
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.25	101.93
5.44	101.82
9.18	99.99
12.55	99.73
15.00	99.20
16.19	98.85
17.03	97.92
17.84	97.65
20.05	97.50
21.05	97.43
22.33	97.53
24.61	97.75
26.34	99.21
33.63	100.17
39.48	102.09
45.3	102.10

SUMMARY DATA	
Bankfull Elevation:	101.8
Bankfull Cross-Sectional Area:	79.2
Bankfull Width:	33.2
Flood Prone Area Elevation:	106.2
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.4
Mean Depth at Bankfull:	2.4
W / D Ratio:	13.9
Entrenchment Ratio:	4.5
Bank Height Ratio:	1.0

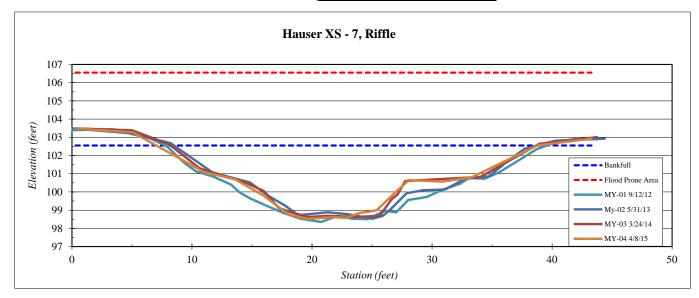
Stream Type	C


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 6, Pool
Feature	Pool
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

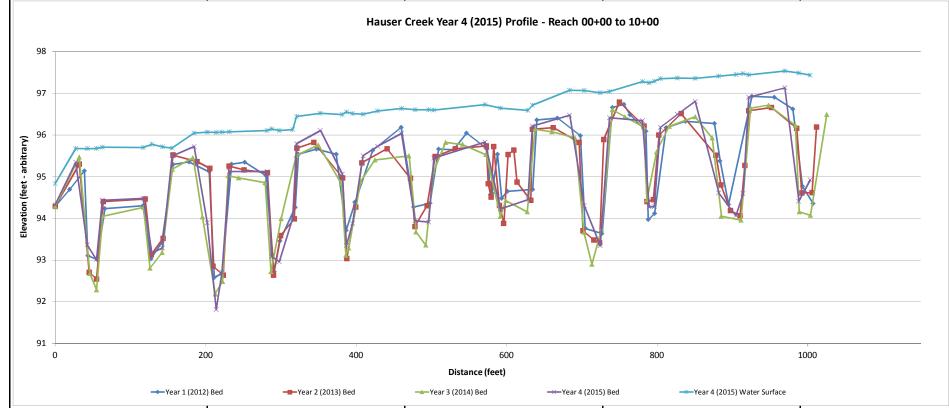
Station	Elevation
0.00	103.12
6.54	102.23
14.07	101.45
18.21	100.76
20.46	100.78
21.75	100.67
22.73	100.43
23.86	99.69
25.28	98.90
26.91	98.68
28.66	98.35
30.12	98.04
31.23	97.62
32.16	97.73
32.88	97.96
33.80	99.37
35.42	100.13
37.71	100.79
42.30	103.08
48.49	103.27

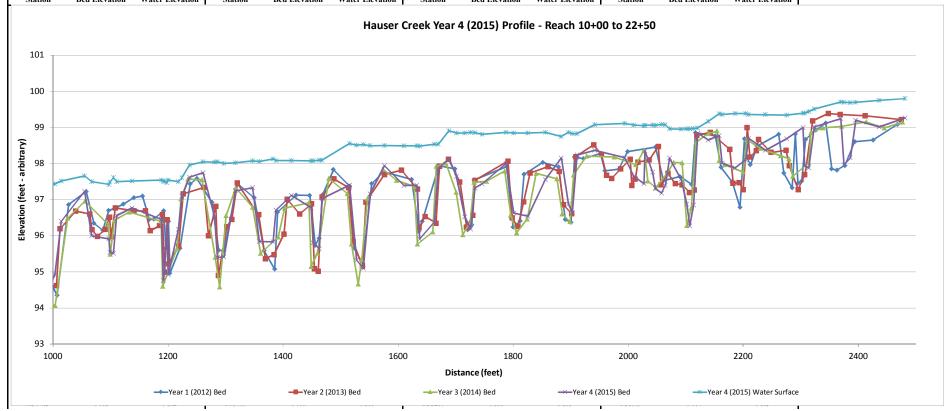
SUMMARY DATA	
Bankfull Elevation:	103.1
Bankfull Cross-Sectional Area:	95.8
Bankfull Width:	41.7
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	5.4
Mean Depth at Bankfull:	2.3
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

Stream Type	С


Site	Hauser Creek
Watershed:	Yadkin Pee Dee
XS ID	XS - 7, Riffle
Feature	Riffle
Date:	4/8/2015
Field Crew:	Perkinson, Gibbons

Station	Elevation
0.30	103.49
5.07	103.27
11.02	101.09
13.59	100.70
15.98	99.79
18.06	98.77
19.59	98.53
21.86	98.62
22.83	98.58
24.01	98.85
25.38	98.99
26.79	99.88
28.05	100.65
30.90	100.57
33.27	100.79
38.77	102.55
43.28	102.92


SUMMARY DATA	
Bankfull Elevation:	102.6
Bankfull Cross-Sectional Area:	69.9
Bankfull Width:	31.7
Flood Prone Area Elevation:	106.6
Flood Prone Width:	150.0
Max Depth at Bankfull:	4.0
Mean Depth at Bankfull:	2.2
W / D Ratio:	14.4
Entrenchment Ratio:	4.7
Bank Height Ratio:	1.0


Stream Type	С
-------------	---

Project Name	Hauser Creek - Year 4 (2015) Profile				2012	2013	2014	2015		
Reach	Main Reach (00+00 - 10+00)		Avg. Water Surfac	e Slope	0.0022	0.0022	0.0022	0.0020		
Feature	Profile		Riffle Length		48	56	51	52		
Date	4/8/15		Avg. Riffle Slope		0.0047	0.0039	0.0043	0.0055		
Crew	Perkinson, Gibbons		Pool Length		16	18	21	17		
			Avg. Pool Slope		0.0005	0.0004	0.0008	0.0018		
	2012		2013			2014			2015	
	Year 1 Monitoring \Survey	Ye	ear 2 Monitoring \Su	irvey	Ye	ear 3 Monitoring \S	urvey	Ye	ear 4 Monitoring \S	urvey
Station	Bed Elevation Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
				-		-	-		-	

Project Nam	e Hauser Creek - Year 4 (2015) Profile				2012	2013	2014	2015			i
Reach	Main Reach (10+00 - 22+50)	A	Avg. Water Surface	e Slope	0.0022	0.0022	0.0022	0.0020			i
Feature	Profile	F	Riffle Length		48	56	51	52			i
Date	4/8/15	A	Avg. Riffle Slope		0.0047	0.0039	0.0043	0.0055			i
Crew	Perkinson, Gibbons	F	Pool Length		16	18	21	17			i
		A	Avg. Pool Slope		0.0005	0.0004	0.0008	0.0018			i
											i
	2012		2013			2014			2015	ļ	i
	Year 1 Monitoring \Survey	Year	r 2 Monitoring \Su	rvey	Ye	ear 3 Monitoring \S	urvey	Ye	ear 4 Monitoring \Su	rvey	i
Station	Bed Elevation Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	i

	Pebble Count,					
	Hauser Creek					
	Yadkin Pee De	ee				
No	ote: Cross Section	n 3				
100% —		Р	ebble Count, Hause	er Creek		
90%						
80%						
70%						
60%						
ਲ 50%						
¥ 40%						
e						
i⊑ 30% 						
ষ্ট 20% —						
"		<u> </u>	•			
1070				→ → ↑		
0% +	0.1	1	10	100	1000	10000
0.01	0.1	I	10	100	1000	10000
Particle	Size (mm)	■—Cumulative Per	cent Percent Ite	em —— Riffle	——Pool ——Rur	n → Glide
Size	percent less than	(mm)	P	ercent by substr	ate type	

	Size percent less than (mm)					Percen	it by substra	ite type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
0.078	0.64	4.9	21	71	15%	33%	44%	7%	0%	0%

	Pebble Count,					
	Hauser Creek					
	Yadkin Pee De	<u>e</u>				
	Note: Cross Section	5				
	tote. Closs Section	<u> </u>				
		Pe	bble Count, Haus	er Creek		
100%						A
90%			1			
80%						
70%						
60%						
듇 50% ——						
e 30%						
# 30%						
30% - 20% -	•					
4 10% ┼	•	+				
0%						
0.01	0.1	1	10	100	1000	

Size percent less than (mm)						Percen	nt by substra	ite type		
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock
#N/A	#N/A	0.1	1	3	44%	48%	8%	0%	0%	0%

		Pebble Co	unt,				
		Hauser Cr					
		Yadkin Pe	e Dee				
		Note: Cross Sec	tion 7				
			Pebble	e Count, Hau	ıser Creek		
	100% —				2 2		
	90%						
	80%						
	70%						
	60%			<u> </u>			
an	50%			 			
Percent Finer Than	40%						
Fine	30%						
cent	20%						
= Per	10%						
	0%						
	0.01	0.1	1	10	100	1000	10000
	Pa	rticle Size (mm)	—■—Cumulative Percent	◆ Percent	Item —≜ Riffle —	—Pool — ∗ Rur	n — Glide

	Size per	cent less th	an (mm)		Percent by substrate type									
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock				
0.088	0.92	10.6	76	117	12%	24%	40%	24%	0%	0%				

	Pebble Count,					
•	Hauser Creek					
	Yadkin Pee De	ee				
Note	e: Reach Total					
4000/		Pebl	ble Count, Hause	er Creek		_
100%						
90%						
80%						
70%						
60%						
ਰੂ 50%						
40%	<u> </u>					
20% Local Line Than 20% Local 10% Local Than 20% Local 10% Local Than 20% Local T						
± 30%						
ଞ୍ଚି 20% 📗						
۵ 10%	 					
0%						
0.01	0.1	1	10	100	1000	10000
Particle S	Size (mm)	Cumulative Percen	t • Percent Ite	em —≟—Riffle -	——Pool ——Rur	Glide

	Size per	cent less th	an (mm)		Percent by substrate type									
D16	D35	D50	D84	D95	silt/clay	sand	gravel	cobble	boulder	bedrock				
#N/A	0.16	0.6	35	81	23%	35%	31%	10%	0%	0%				

Table 10. Baseline Stream Data Summary Hauser Stream Restoration Site-Project No. 92471

_	_ 2				tream					110. 32	-471								
Parameter	Gauge ²	Reg	ional C	urve		Pre-l	Existin	g Cond	ition		Reference Reach(es) Data						Design		
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max
Bankfull Width (ft)	-	-	-	-	17.2		20.8	27.7			21.5		26.5	30.9				33	
Floodprone Width (ft)					176.8		275.2	333.4			306		415	530			210	268	330
Bankfull Mean Depth (ft)	-	-	-	-	2		2.6	3.1			1.6		2.2	3.4				2.5	
¹ Bankfull Max Depth (ft	-				3.9		4.3	4.8			3.3		3.8	4.2			3.3	3.8	4.2
Bankfull Cross Sectional Area (ft ²)	-	-	-	-	38		54.7	71.2			43		60	80				83.2	
Width/Depth Ratio	-				5.5		8	10.8			7		12	19				13	
Entrenchment Ratio	-				10		13.5	19.3			8.3		16	22.4			6.4	8.1	10
¹ Bank Height Ratio	-				8.0		1.26	1.65			0.7		0.86	1.07			0.9	1	1.1
Profile																			
Riffle Length (ft)																			
Riffle Slope (ft/ft)																			
Pool Length (ft)																			
Pool Max depth (ft)				4.6		5.4	7.2			3.8		4.5	5.2			3.5	4	4.7
Pool Spacing (ft)					12.3		83.2	308			30		64	106			65	89	110
Pattern																			
Channel Beltwidth (ft)					35		46.6	56			26		30	36			43	61.5	107
Radius of Curvature (ft)					23		92.1	273			13		85	275			50	80	155
Rc:Bankfull width (ft/ft)					1.2		4.5	14.4			0.53		3.58	11.2			1.5	2.4	4.7
Meander Wavelength (ft)					55		118	245			60		90	160			128	164	194
Meander Width Ratio					2.9		5.8	12.9			1.1		1.3	1.6			1.3	1.9	3.3
Transport parameters					_												1		
Reach Shear Stress (competency) lb/f²																			
Max part size (mm) mobilized at bankfull																			
Stream Power (transport capacity) W/m ²																			
Additional Reach Parameters																			
Rosgen Classification							C5	/E5					C5.	/E5				C5	
Bankfull Velocity (fps)							5.	24										5	
Bankfull Discharge (cfs)							4	16											
Valley length (ft)								56											
Channel Thalweg length (ft)							22	42					-	-				2463	
Sinuosity (ft)							1.				1.1					1.17			
Water Surface Slope (Channel) (ft/ft)								024			0.0028						0.0025		
BF slope (ft/ft)	-																		
³ Bankfull Floodplain Area (acres)					<u> </u>		-						-						
⁴ % of Reach with Eroding Banks					<u> </u>														
Channel Stability or Habitat Metric	:							-											
Biological or Other													-	-					

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

	Table	11a. N		ring Da		imens	ional I			Summ		imens	ional I			Cross		ons)	Ī	Cre	on Cont	ion 4 (P	201)	
December 6 and beautiful baseling to 1	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY-
Based on fixed baseline bankfull elevation					CTIVI	IVIT			_		IVITO	IVI T					IVI O	IVI T					IVITO	IVIT
Record elevation (datum) used		98.8	98.9	99.0			99.3	99.3	99.3	99.3			101.3	101.2	101.2	101.2			101.3	101.4	101.4	101.3		
Bankfull Width (ft)		29.0	29.2	29.4			27.6	26.8	27.4	27.8			32.4	31.3	31.2	31.3			28.9	30.0	29.2	27.9		
Floodprone Width (ft)	150.0	150.0	150.0	150.0			150.0	150.0	150.0	150.0			150.0	150.0	150.0	150.0			NA	NA	NA	NA	<u> </u>	
Bankfull Mean Depth (ft)	2.1	2.0	2.0	2.0			1.8	1.9	1.8	1.8			2.4	2.2	2.1	2.0			3.1	3.0	3.4	3.5		
Bankfull Max Depth (ft)	3.6	3.5	3.4	3.5			3.7	3.8	4.6	4.7			3.6	3.7	3.6	3.6			5.9	6.1	6.8	6.4		
Bankfull Cross Sectional Area (ft ²)	61.8	59.2	58.2	59.1			49.5	49.6	50.2	50.6			76.3	70.2	67.0	63.9			88.3	91.3	98.1	97.8		Î
Bankfull Width/Depth Ratio	13.8	14.2	14.7	14.6			15.4	14.5	15.0	15.3			13.8	14.0	14.5	15.3			NA	NA	NA	NA		
Bankfull Entrenchment Ratio	5.1	5.2	5.1	5.1			5.4	5.6	5.5	5.4			4.6	4.8	4.8	4.8			NA	NA	NA	NA		T
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0		t
Cross Sectional Area between end pins (ft ²)																								
d50 (mm)	_	NA	NA	NA			NA	NA	NA	NA		İ	23.1	18.8	18.8	4.9			NA	NA	NA	NA		┢
		Cro		ion 5 (Ri	iffle)					ion 6 (P	ool)	1				on 7 (Ri	ffle)							
Based on fixed baseline bankfull elevation ¹	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+						
Record elevation (datum) used	101.9	101.8	101.9	101.8			103.1	103.1	103.1	103.1		l	102.7	102.7	102.7	102.6			1					
Bankfull Width (ft)		32.6	33.4	33.2			39.7	41.5	41.1	41.7			33.0	31.3	31.0	31.7			1					
Floodprone Width (ft)	150.0	150.0	150.0	150.0			NA	NA	NA	NA	Ì	Ì	150.0	150.0	150.0	150.0			1					
Bankfull Mean Depth (ft)	2.6	2.5	2.4	2.4			2.8	2.7	2.4	2.3			2.6	2.4	2.3	2.2			1					
Pankfull May Donth (ff)	13	15	4.5	4.4	1		5.6	5.7	5.2	5.4			11	12	4.0	4.0			1					

85.5

12.7

4.5

1.0

74.8

13.1

4.8

72.1

13.3

4.8

69.9

14.4

4.7

109.9

NA

NA

1.0

110.6 96.8

NA

NA

1.0

NA

NA

95.8

NA

NA

1.0

80.8 79.2

13.9

4.5

13.8

4.5

85.8 82.5

12.9

4.6

13.2

4.5

Bankfull Cross Sectional Area (ft2)

Cross Sectional Area between end pins (ft2

Bankfull Width/Depth Ratio

Bankfull Bank Height Ratio

Bankfull Entrenchment Ratio

Bankfull Width (ft) 27. Floodprone Width (ft) Bankfull Mean Depth (ft) 1. Bankfull Max Depth (ft) 3. Bankfull Cross Sectional Area (ft²) 49. Width/Depth Ratio 12.	7.6		33.6 2.6 4.4 85.8	SD ⁴	n	26.8	Mean	Med 31.3 150	Max 32.6	SD ⁴	n	Min		MY	- 3			•		MY-	- 4					MY	- 5		
Bankfull Width (ft) 27. Floodprone Width (ft) Bankfull Mean Depth (ft) 1. Bankfull Max Depth (ft) 3. Bankfull Cross Sectional Area (ft²) 49. Width/Depth Ratio 12. Entrenchment Ratio 4.	7.6 1.8 3.6 9.5 2.7	32.4 150 2.4 3.7 76.3 13.5	33.6 2.6 4.4 85.8	SD ⁴	n	26.8	Mean	31.3		SD⁴	n	Min												MY- 5					
Floodprone Width (ft) Bankfull Mean Depth (ft) Bankfull Max Depth (ft) Bankfull Max Depth (ft) Bankfull Cross Sectional Area (ft²) Width/Depth Ratio Entrenchment Ratio 4.	1.8 3.6 9.5 2.7	150 2.4 3.7 76.3 13.5	2.6 4.4 85.8			1.9		_	32.6			IVIIII	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Mean Depth (ft) 1.1 Bankfull Max Depth (ft) 3.1 Bankfull Cross Sectional Area (ft²) 49. Width/Depth Ratio 12. Entrenchment Ratio 4.1	9.5 2.7	2.4 3.7 76.3 13.5	2.6 4.4 85.8					150				27.4		31	33.4			27.8		31.3	33.2								
¹ Bankfull Max Depth (ft) 3.1 Bankfull Cross Sectional Area (ft²) 49. Width/Depth Ratio 12. Entrenchment Ratio 4.1	9.5 2.7	3.7 76.3 13.5	4.4 85.8											150						150									
Bankfull Cross Sectional Area (ft²) 49. Width/Depth Ratio 12. Entrenchment Ratio 4.	9.5 2.7	76.3 13.5	85.8					2.2	2.5			1.8		2.1	2.4			1.8		2	2.4								
Width/Depth Ratio 12. Entrenchment Ratio 4.	2.7	13.5				3.5		3.8	4.5			3.4		4	4.6			3.5		4	4.7								
Entrenchment Ratio 4.		_	15.3			49.6		70.2	82.5			50.2		67	80.8			50.6		63.9	79.2								
	1.5	4.6				13		14.1	14.5			13.5		14.6	15.2			13.8		14.7	15.7								
¹ Bank Height Ratio			5.4			4.6		4.8	5.6			4.5		4.8	5.5			4.5		4.8	5.4								
		1						1						1						1									
Profile																													
Riffle Length (ft) 28			74	12.5	27	8	56	52	154	25	27	15	51	49	123	23	25	13	52	50	95	21	28						
Riffle Slope (ft/ft) 0.0	.0% 0.5	_	2.8%	0.6%	25	0.0%	0.4%	0.2%	3.4%	0.7%	26	0.0%	0.4%	0.1%	3.5%	0.7%		0.0%	0.5%	0.2%	3.1%	0.8%	28						
	3 16	12	49	11	31	4	18	16	58	11	32	8	21	19	42	9	25	2	17	15	41	10	28						
	5.6	5.8	5.9			5.7		5.9	6.1			5.2		6	6.8			5.4		5.9	6.4								
Pool Spacing (ft) 8	8 7	85	118	27	31	8	75	86	154	35	33	39	93	93	174	26	25	26	86	88	131	26	28						
Pattern																													
Channel Beltwidth (ft)																													
Radius of Curvature (ft)									Datt	orn data	a will no	t typical	v he co	llacted i	unless vi	eual dat	a dima	neional	data or	nrofile d	lata								
Rc:Bankfull width (ft/ft)									1 au	ciii dala	a will fio				ant shift			isionai	uata oi	prome u	ala								
Meander Wavelength (ft)																													
Meander Width Ratio																													
Additional Reach Parameters																													
Rosgen Classification			C4					С	4					С	·4					C4	4								\neg
Channel Thalweg length (ft)			468					24						24						246									-
Sinuosity (ft)			.17					1.1						1.						1.1									-
Water Surface Slope (Channel) (ft/ft)			0022					0.00						0.0						0.00									$\overline{}$
BF slope (ft/ft)																													\neg
³ Ri% / Ru% / P% / G% / S% 529	2% 16	% 20%	12%			29%	8%	11%	52%			55%	13%	22%	10%			59%	10%	19%	12%								
3SC% / Sa% / G% / C% / B% / Be% 199	9% 28	% 32%	21%	0%	0%	17%	31%	38%	13%	1%	0%	16%	35%	39%	9%	1%	0%	23%	35%	31%	10%	0%	0%						\neg
³ d16 / d35 / d50 / d84 / d95 / N/	NA 0.2	6 6.9	73	130		NA	0.34	4	44	108		0.062	0.44	1.8	38	104		NA	0.16	0.6	35	81							
² % of Reach with Eroding Banks	<5%					<5%						<5%				<5%													
Channel Stability or Habitat Metric																													
Biological or Other								-	_					-	-						-								

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Gilde, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

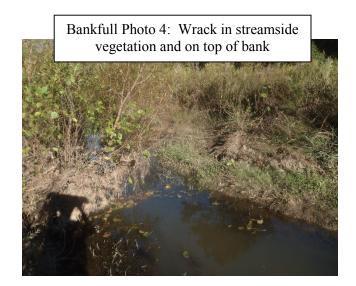
APPENDIX E HYDROLOGY DATA

Table 12. Verification of Bankfull Events

Table 12. Verification of Bankfull Events

Hauser Creek Restoration Site (DMS Project Number 92741)

Date of Data	Date of		Photo (if
Collection	Occurrence	Method	available)
L	December 26,	Approximately 1.16 inches of rain documented to occur after two 0.5-inch	,
June 3, 2013	2012	events within the previous week at a nearby rain station*.	
April 29,	January 17,	Approximately 4.6 inches of rain documented to occur from January 13-17,	
2013	2013	2013 at a nearby rain station*.	
April 29,		Approximately 1.25 inches of rain documented at a nearby rain station*, in	
2013/	April 28, 2013	addition to crest gauge observations and visual signs of overbank including	1-3
June 3, 2013		wrack and sediment deposition adjacent to the channel, and receding water.	
November	June 7, 2013	Approximately 2.76 inches of rain documented to occur between June 5-7,	
25, 2013	Julie 7, 2013	2013 at a nearby rain station*.	
November	July 27, 2013	Approximately 1.89 inches of rain documented to occur on July 27, 2013 at	
25, 2013	July 27, 2013	a nearby rain station*.	
November	August 12,	Approximately 2.60 inches of rain documented to occur between August 10-	
25, 2013	2013	13, 2013 at a nearby rain station*.	
July 7, 2014	November 26,	Approximately 2.42 inches of rain documented to occur between November	
July 7, 2014	2013	26-27, 2013 at a nearby rain station*.	
July 7, 2014	December 22,	Approximately 2.47 inches of rain documented to occur between December	
July 7, 2014	2013	22-23, 2013 at a nearby rain station*.	
July 7, 2014	January 11,	Approximately 1.96 inches of rain documented to occur between January	
July 7, 2014	2014	10-11, 2014 at a nearby rain station*.	
		Approximately 2.33 inches of rain documented to occur between April 14-	
July 7, 2014	April 15, 2014	15, 2014 and one week after a 1.56-inch rainfall event at a nearby rain	
		station*.	
July 8, 2015	April 19, 2015	Approximately 1.84 inches of rain documented to occur on April 19, 2015 at	
July 6, 2013	April 19, 2013	a nearby rain station*.	
October 9,	August 10,	Approximately 1.69 inches of rain documented to occur on August 10, 2015	
2015	2015	at a nearby rain station*.	
October 14,	October 3,	Approximately 4.79 inches of rain documented to occur between September	4
2015	2015	24 and October 3, 2015 at a nearby rain station*.	7


^{*}Reported at the Winston Salem Airport (KINT) (Weatherunderground 2015)

Bankfull Photo 3: Crest gauge

